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1 Objectives

The objective of this task is to explore quantum computational models of
dynamical physical systems. Focus is placed on compatible quantum com-
puting algorithms, physical implementations, and architectures to simulate
difficult physical systems that cannot readily be done by strictly classical
means. Furthermore, the objective includes exploring approaches suited to
a large array of small quantum computers.

2 Status of Effort

Natural quantum mechanical interactions in Carbon-13 have been controlled
by nuclear magnetic resonance (NMR) to demonstrate simple quantum com-
putations. The spin-1/2 nucleus of a Carbon-13 isotope in a magnetic field
( 10 Tesla) is used a a two-level quantum system. The two states of the
nucleus, the spin-up and down (aligned and anti-aligned), are used to em-
body a qubit. Several Carbon-13 nuclei in the organic amino acid alanine,
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have been used as proof-of-concept. Naturally occurring quantum mechani-
cal interactions among the isotopes in this molecule have been coaxed using
NMR spectroscopy to do simple sequences of quantum gates (for example,
the collision operator for a quantum lattice-gas automaton) [1]. Essentially
error-free NMR bulk computation allows for accurate and nondestructive
qubit measurement using a large ensemble (∼ 1018) of identical quantum
computers. Preliminary NMR gate sequences for modeling fluid mechanics
(the continuity equation and the Navier-Stokes equation) are undergoing test-
ing. Unfortunately, the present day NMR technique is not likely to scale to
more than a dozen qubits per quantum computer and we have found it quite
difficult to embodying large arrays of small quantum computers. Applying
quantum computation to physical modeling requires lattice-based quantum
computers with at least millions of nodes. Other promising approaches to
quantum computing based on quantum dots, Josephson junctions, SQUIDs,
spin electronics, optical lattices, and improved NMR spectroscopic techniques
are therefore under consideration.

3 Accomplishments

Fundamental to all approaches is the computing algorithm. Their implemen-
tation and application impose trade-off conditions for algorithm complexity
and the number of quantum computer elements. I have defined the following
two types of quantum computing architectures: type-I quantum comput-
ers have global phase-coherence, and type-II quantum computers have local
phase-coherence, limited both in space and time. In a type-I computer,
each qubit may be entangled with any or all other qubits and the system
wavefunction is phase coherent for the duration of the entire quantum gate
sequence needed to implement a particular algorithm. The outcome may
be determined by measuring one or a few qubits. Type-I quantum comput-
ers may be used, for example, for Shor’s factoring algorithm or a quantum
lattice-gas algorithm for the many-body Schrödinger equation.1 A type-II
quantum computer represents a network or array of small quantum com-
puters interconnected by classical communication channels. Each qubit may
be entangled with only nearby qubits at a particular node of the quantum
computer and for only for a short time. The system wavefunction is always

1 A quantum lattice gas is a quantum spin system that mimics the behavior of a system
of massive quantum particles, propagating and colliding on a discrete space-time lattice.
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factorized into a tensor product state over the nodes. The outcome is de-
termined by measuring qubits on all nodes of the array. Qubits spatially
arranged in a regular periodic lattice and small groups of neighboring qubits
are homogeneously updated by local quantum gate operations applied simul-
taneously across the lattice. Type-II quantum computer may be used, for
example, for the quantum lattice-gas algorithm for Navier-Stokes fluid simu-
lation [1]. The type-I approach initially appeared as the most promising, and
has received almost exclusive attention. However, since its development may
take decades, we have also focused attention on quantum algorithms suited
to type-II architectures.

This year we tested whether a phase-coherent type-I quantum computer
can be used to simulate quantum lattice gas for fluid dynamics simulation
[2]. Using principles and concepts from quantum mechanics instead of from
classical mechanics, we formulate “local collision rules” for an artificial mi-
croscopic particle dynamics.
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Figure 1: Oscillations of a mass density waves in the one dimensional quantum lattice gas
for a system size of V = 12, 14, 20` in the m = 4 and px = 0 mc sector. The ordinate is the
absolute value of the amplitude of the mass-density wave divided by the peak amplitude
of the initial perturbation.

Numerical data taken from an exact simulation of a globally phase-coherent
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quantum lattice-gas system was carried out for several systems with various
grid sizes. The simulation method uses symbolic mathematics to implement
a quantum mechanical system in the second quantized representation. A
globally phase-coherent wavefunction is simulated on a classical computer.
This is possible because the number of spatial sites of the lattice is relatively
small (∼ 60) and the number of qubits per site is few.2 The main finding
from the simulation is that viscous damping, as occurs in a classical fluid,
is not observed in the one-dimensional quantum lattice-gas model. Instead,
mass density waves oscillate indefinitely and the simulation confirms that
there is both growth and damping in the hydrodynamic sound mode of the
artificial fluid.

A time series history of the square of the peak amplitude is plotted in Fig-
ure 1 with three grid sizes and initial condition. In the quantum simulation,
the peak amplitude does not decay in time, unlike the results obtained in
the classical lattice-Boltzmann simulations. Initially, within the first couple
dozen time steps, the peak amplitude begins to decay, very much like it does
in a classical microscopic simulation or lattice-Boltzmann simulation of the
model. However, the amplitude does not continue to damp in subsequent
time steps. The peak amplitude rises and falls in a random fashion. No
damping is observed even after a thousand time steps. Since the quantum
algorithm is unitary (and hence the collisions obey the principle of detailed
balance) the dynamics is reversible even though it is chaotic.

To obtain an accurate estimate of the sound speed of the mass density
waves in the 1D quantum lattice-gas simulations, a Fourier transform of the
time series history of the mass density at a single site of the system was
computed and the power spectrum ρ∗

ω(x)ρω(x) plotted (see Figure 2). The
signal, which is ρ(6`, t), is measured at site x = 6`. Plotted is the power
spectrum of the Fourier transform of the signal, which is |ρω|2, versus sound
speed (this is proportional to the oscillation frequeny, cs = `f). A peak in
the power spectrum occurs just below the mean-field approximation of sound
speed, which is plotted as the red vertical bar, but otherwise the simulation

2Since the numerical simulation is an exact treatment of a quantum spin system with
60 spins, this is actually a rather large computational task for a classical computer. Fur-
thermore, since the size of the Hilbert space grows as 2Q where Q is the number of spins
(or qubits), it is not possible to store all the quantum basis states in memory at any one
time. Fortunately, only a relatively small sector of the Hilbert space needs to be loaded
into memory at any one time in our implementation of the quantum lattice-gas algorithm,
which nevertheless uses an exact unitary evolution operator.

4



60 Qubits

42 Qubits

36 Qubits
12 sites

14 sites

20 sites

0.5 1 1.5 2 2.5 3 3.5
Wave Propagation Speed

0.005
0.01

0.015
0.02

0.025
0.03

P
o

w
e

r

0.5 1 1.5 2 2.5 3 3.5
Wave Propagation Speed

0.01

0.02

0.03

0.04

0.05

P
o

w
e

r

0.5 1 1.5 2 2.5 3 3.5
Wave Propagation Speed

0.01

0.02

0.03

0.04

0.05

P
o

w
e

r

Figure 2: Discrete Fourier transforms of the time series data are taken to give ρ∗
ω(x)ρω(x).

A peak in the power spectrum, |ρω|2, occurs close to the predicted sound speed, which is
plotted a the red vertical line. The abscissa is converted into unit of velocity, c = `

τ , to
show that there is a unique sound speed. The ordinate has units of (m

` × τ)2.

and analytical results are in excellent agreement.

4 Personnel Supported

This fiscal year there were several researchers supported under the 2304TD
task: Dr Bruce Boghosian, of the Boston U. Center for Comp. Sci., Dr
Richard Nelson, of the MIT Francis Bitter Magnet Lab, and Harris Gilliam,
of the Radex Corp. IPA agreements with Boston U. and MIT are used.

5 Interactions/Transitions

We are in close collaboration with MIT Nuclear Engineering Department
for the purpose of building prototype quantum computer arrays using NMR
spectroscopy. We are using specialized NMR spectrometers from Bruker In-
struments Inc., NMR Division, Billerica, Massachusetts, with tightly coupled
feedback and control system for producing very high accuracy scanning gra-
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dient fields for spatial localization, addressing, and control, which is tailored
to our needs.

6 Related Lectures

• Invited Lecture Cool Lessons in Science and Technology, “A Talk on
Quantum Computation”, Air Force Research Laboratory, Hanscom
AFB & Kirtland AFB 31 Mar 2000

• Invited Lecture Quantum Computing Colloquium, “Mesoscopic Quan-
tum Computers for Physical Simulation”, Massachusetts Institute of
Technology, Cambridge, Massachusetts 27 Sep 1999

• Invited Lecture 1st NASA International Conference on Quantum Com-
puting and Quantum Communication, “Quantum Computers for Fluid
Simulations”, NASA/JPL, Palm Springs, California 17 Feb 1998

• Invited Lecture MIT Media Lab, “Quantum Computers For Fluid Dy-
namics Simulation”, MIT E15-054, Massachusetts Institute of Technol-
ogy, Cambridge, Massachusetts 22 Jan 1998
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